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Abstract

Graph neural networks have recently achieved remarkable success in representing
graph-structured data, with rapid progress in both the node embedding and graph
pooling methods. Yet, they mostly focus on capturing information from the nodes
considering their connectivity, and not much work has been done in representing
the edges, which are essential components of a graph. However, for tasks such
as graph reconstruction and generation, as well as graph classification tasks for
which the edges are important for discrimination, accurately representing edges
of a given graph is crucial to the success of the graph representation learning.
To this end, we propose a novel edge representation learning framework based
on Dual Hypergraph Transformation (DHT), which transforms the edges of a
graph into the nodes of a hypergraph. This dual hypergraph construction allows
us to apply message-passing techniques for node representations to edges. After
obtaining edge representations from the hypergraphs, we then cluster or drop
edges to obtain holistic graph-level edge representations. We validate our edge
representation learning method with hypergraphs on diverse graph datasets for
graph representation and generation performance, on which our method largely
outperforms existing graph representation learning methods. Moreover, our edge
representation learning and pooling method also largely outperforms state-of-the-
art graph pooling methods on graph classification, not only because of its accurate
edge representation learning, but also due to its lossless compression of the nodes
and removal of irrelevant edges for effective message-passing.1

1 Introduction

The recent demand in representing graph-structured data, such as molecular, social, and knowledge
graphs, has brought remarkable progress in the Graph Neural Networks (GNNs) [61, 54]. Early
works on GNNs [32, 20, 56] aim to accurately represent each node to reflect the graph topology, by
transforming, propagating, and aggregating information from their neighborhoods based on message-
passing schemes [17]. More recent works focus on learning holistic graph-level representations,
by proposing graph pooling techniques that condense the node-level representations into a smaller
graph or a single vector. While such state-of-the-art node embedding or graph pooling methods
have achieved impressive performances on graph-related tasks (e.g., node classification and graph
classification), they have largely overlooked the edges, which are essential components of a graph.

Most existing GNNs, including ones that consider categorical edge features [45, 17], only implicitly
capture the edge information in the learned node/graph representations when updating them. While a
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Figure 1: (Left): The two molecular graphs2 have the identical set of nodes, but possess completely different
properties due to the difference in edges. (Right): An illustration of the proposed edge representation learning
framework with two novel edge pooling schemes. The grey box in the center describes the proposed Dual
Hypergraph Transformation, where the numbers (letters) denote the corresponding edges (nodes) in the graph
and nodes (hyperedges) in the hypergraph. The two blue boxes in the right illustrate the proposed edge pooling
methods, HyperCluster which clusters similar edges, and HyperDrop which drops unnecessary edges.

few of them aim to obtain explicit representations for edges [28, 18, 57], they mostly use them only to
augment the node-level representations, and thus suboptimally capture the edge information. This is
partly because many benchmark tasks for GNN performance evaluation, such as graph classification,
do not require the edge information to be accurately preserved. Thus, on this classification task, simple
MLPs without any connectivity information can sometimes outperform GNNs [11, 25]. However, for
tasks such as graph reconstruction and generation, accurately representing the edges of a graph is
crucial to success, as incorrectly reconstructing/generating edges may result in complete failure of
the tasks. For example, the two molecules (a) and (b) in Figure 1 have exactly the same set of nodes
and are only different in their edges (bond types), but exhibit extremely different properties.

To overcome such limitations of existing GNN methods in edge representation learning, we propose
a simple yet effective scheme to represent the edges. The main challenge of handling edges is
the absence or suboptimality of the message-passing scheme for edges. We tackle this challenge
by representing the edges as nodes in a hypergraph, which is a generalization of a graph that can
model higher-order interactions among nodes as one hyperedge can connect an arbitrary number of
nodes. Specifically, we propose Dual Hypergraph Transformation (DHT) to transform edges of the
original graph to nodes of a hypergraph (Figure 1), and nodes to hyperedges. This hypergraph-based
approach is effective since it allows us to apply any off-the-shelf message-passing schemes designed
for node-level representation learning, for learning the representation of the edges of a graph.

However, representing each edge well alone is insufficient in obtaining an accurate representation of
the entire graph. Thus we propose two novel graph pooling methods for the hypergraph to obtain
compact graph-level edge representations, namely HyperCluster and HyperDrop. Specifically, for
obtaining global edge representations for an entire graph, HyperCluster coarsens similar edges into
a single edge under the global graph pooling scheme (see HyperCluster in Figure 1). On the other
hand, HyperDrop drops unnecessary edges from the original graph by calculating pruning scores on
the hypergraph (see HyperDrop in Figure 1). HyperCluster is more useful for graph reconstruction
and generation as it does not result in the removal of any edges, while HyperDrop is more useful for
classification as it learns to remove edges that are less useful for graph discrimination.

We first experimentally validate the effectiveness of the DHT with HyperCluster, on the reconstruction
of synthetic and molecular graphs. Our method obtains extremely high performance on these
tasks, largely outperforming baselines, which shows its effectiveness in accurately representing the
edges. Then, we validate our method on molecular graph generation tasks, and show that it largely
outperforms base generation methods, as it allows us to generate molecules with more correct bonds
(edges). Further, we validate HyperDrop on 10 benchmark datasets for graph classification, on which
HyperDrop outperforms all hierarchical pooling baselines, with larger gains on social graphs, for
which the edge features are important. Our main contributions are summarized as follows:

• We introduce a novel edge representation learning scheme using Dual Hypergraph Transforma-
tion, which exploits the dual hypergraph whose nodes are edges of the original graph, on which we
can apply off-the-shelf message-passing schemes designed for node-level representation learning.

• We propose novel edge pooling methods for graph-level representation learning, namely Hyper-
Cluster and HyperDrop, to overcome the limitations of existing node-based pooling methods.

• We validate our methods on graph reconstruction, generation, and classification tasks, on
which they largely outperform existing graph representation learning methods.

2We depict only the heavy atoms, as conventional preprocessing of molecular graphs drops hydrogen atoms.
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2 Related Work

Graph neural networks Graph neural networks (GNNs) mostly use the message-passing
scheme [17] to aggregate features from their neighbors. Particularly, Graph Convolutional Net-
work (GCN) [32] generalizes the convolution operation in the spectral domain of graphs, and updates
the representation of each node by applying the shared weights on it and its neighbors’ representations.
Similarly, GraphSAGE [20] propagates the features of each node’s neighbors to itself, based on
simple aggregation operations (e.g., mean). Graph Attention Network (GAT) [50] considers the
relative importance on neighboring nodes with attention, to update each node’s representation as
the weighted combination of its neighbors’. Xu et al. [56] show that a simple sum on neighborhood
aggregation makes GNNs as powerful as the Weisfeiler-Lehman (WL) test [53], which is effective
for distinguishing different graphs. While GNNs have achieved impressive success on graph-related
tasks, most of them only focus on learning node-level representations, with less focus on the edges.

Edge-aware graph neural networks Some existing works on GNNs consider edge features while
updating the node features [45, 49], however, they only use the edges as auxiliary information and
restrict the representation of edges as the discrete features with categorical values. While a few
methods [28, 17, 18, 57] explicitly represent edges by introducing edge-level GNN layers, they use the
obtained edge features solely for enhancing node features. Also, existing message-passing schemes
for nodes are not directly applicable to edge-level layers, as they are differently designed from the
node-level layers, which makes it challenging to combine them with graph pooling methods [58] for
graph-level representation learning. We overcome these limitations by proposing a dual hypergraph
transformation scheme, to obtain a hypergraph whose nodes are edges of the original graph, which
allows us to apply any message-passing layers designed for nodes to edges.

Graph transformation Recently, some works [29, 37] propose to transform the original graph into
a typical graph structure, to apply graph convolution for learning the edge features. Specifically, they
construct a line graph [21], where the nodes of the line graph correspond to the edges of the original
graph, and the nodes of the line graph are connected if the corresponding edges of the original graph
share the same endpoint. However, the line graph transformation has obvious drawbacks: 1) the
transformation is not injective, thus two different graphs may be transformed into the same line
graph; 2) the transformation is not scalable; 3) node information in the original graph may be lost
during the transformation. Instead of using such a graph structure, we use hypergraphs, which can
model higher-order interactions among nodes by grouping multi-node relationships into a single
hyperedge [4]. Using the hypergraph duality [44], edges of the original graph are regarded as the
nodes of a hypergraph. For example, Lugo-Martinez and Radivojac [36] cast a hyperlink prediction
task as an instance of node classification from the dual form of the original hypergraph. On the
other hand, Kajino [30] uses the duality to extract useful rules from the hypergraph structures by
transforming molecular graphs, for their generation. However, none of the existing works exploit the
relation between the original graph and the dual hypergraph for edge representation learning.

Graph pooling Graph pooling methods aim to learn accurate graph-level representation by com-
pressing a graph into a smaller graph or a vector with pooling operations. The simplest pooling
approaches are using mean, sum or max over all node representations [1, 56]. However, they treat all
nodes equally, and cannot adaptively adjust the size of graphs for downstream tasks. More advanced
methods, such as node clustering methods, coarsen the graph by clustering similar nodes based on
their embeddings [58, 5], whereas the node pruning methods reduce the number of nodes from the
graph by dropping unimportant nodes based on their scores [15, 33]. Ranjan et al. [42] combine both
node pruning and clustering approaches, by dropping meaningless clusters after grouping nodes. Baek
et al. [2] propose to use attention-based operations for considering relationships between clusters.
Note that all of those pooling schemes not only ignore edge representations, but also alter the node
set by dropping, clustering, or merging nodes, which result in an inevitable loss of node information.

3 Edge Representation Learning with Hypergraphs

In this section, we first introduce our novel edge representation learning framework with dual
hypergraphs, which we refer to as Edge HyperGraph Neural Network (EHGNN), and then propose
two novel edge pooling schemes for holistic graph-level representation learning: HyperCluster and
HyperDrop. We begin with the descriptions of graph neural networks for node representation learning.
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Figure 2: Dual Hypergraph Transformation. Illustration of the proposed graph-to-hypergraph transformation.

Graph neural networks A graph G with n nodes and m edges, is defined by its node features
X ∈ Rn×d, edge features E ∈ Rm×d′

, and the connectivity among the nodes represented by
an adjacency matrix A ∈ Rn×n. Here, d and d′ are the dimensions of node and edge features,
respectively. Then, given a graph, the goal of a Graph Neural Network (GNN) is to learn the
node-level representation with message-passing between neighboring nodes [17] as follows:

X(l+1)
v = UPDATE

(
X(l)

v ,AGGREGATE
({

X(l)
u : ∀u ∈ N (v;A)

}))
, (1)

where X(l) is the node features at l-th layer, AGGREGATE is the function that aggregates messages
from a set of neighboring nodes of the node v, UPDATE is the function that updates the representation
of the node v from the aggregated messages, and N (v;A) is the set of neighboring nodes for the
node v, obtained from the adjacency matrix A. Such message-passing schemes can incorporate the
graph topology into each node by updating its representation with the representation of its neighbors.

3.1 Edge representation learning with dual hypergraph transformation

Edge representation learning To reflect the edge information on message-passing, some works
on GNNs first obtain the categorical edge features between nodes, and then use them on the AG-
GREGATE function in equation 1, by adding or multiplying the edge features to the neighboring
node’s features [17, 45] (see Appendix A.1 for more details). Similarly, few recent works aim to
obtain explicit edge representations, but only to use them as auxiliary information to augment the
node features, by adding or multiplying edge features to them [18, 57]. Thus, existing works only
implicitly capture the edge information in the learned node representations. Although this might
be sufficient for most benchmark graph classification tasks, many real-world tasks of graphs (e.g.,
graph reconstruction and generation) further require the edges to be accurately represented as the
information on edges could largely affect the task performance.

Table 1: Transformation and message-passing
complexities of edge-aware GNNs, line graph, and
our EHGNN for the star graph, in which one hub
node is connected to n other nodes.

Models Complexity
Transformation Message-passing

Edge-aware GNNs O(n2) O(n)
Line graph O(n2) O(n2)

EHGNN (Ours) O(n) O(n)

Even worse, to define a message-passing function
for edge representation learning, existing works pro-
pose to additionally create the adjacency matrix for
edges, either by defining the edge neighborhood struc-
ture [57] or using the line graph transformation [28].
However, these are highly suboptimal as obtaining
the adjacency of edges requiresO(n2) time complex-
ity (see Appendix A.3 for detailed descriptions), as
shown in Table 1. This is the main obstacle for di-
rectly applying existing message-passing schemes for nodes to edges. To this end, we propose a
simple yet effective method to represent the edges of a graph, using a hypergraph.

Hypergraph A hypergraph is a generalization of a graph that can model graph-structured data with
higher-order interactions among nodes, wherein a single hyperedge connects an arbitrary number
of nodes, unlike in conventional graphs where an edge can only connect two nodes. For example,
in Figure 2, the hyperedge B defines the relation among three different nodes. To denote such
higher-order relations among arbitrary number of nodes defined by a hyperedge, we use an incidence
matrix M ∈ {0, 1}n×m, which represents the interaction between n nodes and m hyperedges,
instead of using an adjacency matrix A ∈ {0, 1}n×n that only considers interactions among n nodes.
Each entry in the incidence matrix indicates whether the node is incident to the hyperedge. We can
formally define a hyperagraph G∗ with n nodes and m hyperedges, as a triplet of three components
G∗ = (X∗,M∗,E∗), where X∗ ∈ Rn×d is the node features, E∗ ∈ Rm×d′

is the hyperedge
features, and M∗ ∈ {0, 1}n×m is the incidence matrix of the hypergraph. We can also represent
conventional graphs in the form of a hypergraph, G = (X,M ,E), in which a hyperedge in the
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incidence matrix M is associated with only two nodes. In the following paragraph, we will describe
how to transform the edges of a graph into nodes of a hypergraph, for edge representation learning.

Dual Hypergraph Transformation If we can change the role of the nodes and edges of the graph
with a shared connectivity pattern across the nodes and edges, while accurately preserving their
information, then we can use any node-based message-passing schemes for learning edges. To
achieve this, inspired by the hypergraph duality [4, 44], we propose to transform an edge of the
original graph into a node of a hypergraph, and a node of the original graph into a hyperedge of
the same hypergraph. We refer to this graph-to-hypergraph transformation as Dual Hypergraph
Transformation (DHT) (see Figure 2). To be more precise, during the transformation, we interchange
the structural role of nodes and edges from the given graph, obtaining the incidence matrix for the new
dual hypergraph simply by transposing the incidence matrix of the original graph (see the incidence
matrix in Figure 2). Along with the structural transformation through the incidence matrix, the DHT
naturally interchanges node and edge features across G and G∗ (see the feature matrices in Figure 2).
Formally, given a triplet representation of a graph, DHT is defined as the following transformation:

DHT : G =
(
X,M ,E

)
7→ G∗ =

(
E,MT ,X

)
, (2)

where we refer to the transformed G∗ as the dual hypergraph of the input graph G. Since the dual
hypergraph G∗ = (E,MT ,X) retains all the information of the original graph, we can recover the
original graph from the dual hypergraph with the same DHT operation as follows:

DHT : G∗ =
(
E,MT ,X

)
7→ G =

(
X,M ,E

)
. (3)

This implies that DHT is a bijective transformation. DHT is simple to implement, does not incur the
loss of any features or topological information of the input graph, and does not require additional
memory for feature representations. Moreover, DHT can be sparsely implemented using the edge list,
which is the sparse form of the adjacency matrix, by only reshaping the edge list of the original graph
into the hyperedge list of the dual hypergraph (see Appendix A.2 for details), which is highly efficient
in terms of time and memory. Thanks to DHT, we define the message-passing between edges of the
original graph as the message-passing between nodes of its dual hypergraph.

Message-passing on the dual hypergraph for edge representation learning After transforming
the original graph into its corresponding dual hypergraph using DHT, we can perform the message-
passing between edges of the input graph, by performing the message-passing between nodes of its
dual hypergraph G∗ = (E,MT ,X), which is formally denoted as follows:

E(l+1)
e = UPDATE

(
E(l)

e ,AGGREGATE
({

E
(l)
f : ∀f ∈ N (e;MT )

}))
, (4)

where E(l) is the node features of G∗ at l-th layer, the AGGREGATE function summarizes the
neighboring messages of the node e of the dual hypergraph G∗, and the UPDATE function updates
the representation of the node e from the aggregated messages. Here N (e;MT ) is the neighboring
node set of the node e in G∗, which we obtain using the incidence matrix MT of G∗. Furthermore,
instead of using the dense incidence matrix, we can sparsely implement the message-passing on the
dual hypergraph with the hyperedge list, from which the complexity of message-passing on the dual
hypergraph reduces to O(m), which is equal to the complexity of message-passing between nodes on
the original graph (See Appendix A.3 for details). Note that, since the form of equation 4 is the same
as the form of equation 1, we can use any graph neural networks which realize the message-passing
operation in equation 1, such as GCN [32], GAT [50], GraphSAGE [20], and GIN [56], for equation 4.
In other words, to learn the edge representations E of the original graph, we do not require any
specially designed layers, but simply need to perform DHT to directly apply existing off-the-shelf
message-passing schemes to the transformed dual hypergraph.

To simplify, we summarize the equation 1 as follows: X(l+1) = GNN
(
X(l),M ,E(l)

)
, and the

equation 4 as follows: E(l+1) = GNN
(
E(l),MT ,X(l)

)
= EHGNN

(
X(l),M ,E(l)

)
, where

EHGNN indicates our edge representation learning framework using DHT. After updating the edge
features E(L) with EHGNN, E(L) is returned to the original graph by applying DHT on the dual
hypergraph G∗. Then, the remaining step is how to make use of these edge-wise representations to
accurately represent the edges of the entire graph, which we describe in the next subsection.
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3.2 Graph-level edge representation learning with edge pooling

Existing graph pooling methods do not explicitly represent edges. To overcome this limitation, we
propose two novel edge pooling schemes: HyperCluster and HyperDrop.

Graph pooling The goal of graph pooling is to learn a holistic representation of the entire graph.
The most straightforward approach for this is to aggregate all the node features with mean or sum
operations [1, 56], but they treat all nodes equally without consideration of which nodes are important
for the given task. To tackle this limitation, recent graph pooling methods propose to either cluster and
coarsen nodes [58, 5] or drop unnecessary nodes [15, 33]. While they yield improved performances
on graph classification tasks, they suffer from an obvious drawback: inevitable loss of both node
and edge information. The node information is lost as nodes are dropped and coarsened, and the
edge information is lost as edges for the dropped nodes or internal edges for the coarsened nodes are
removed. To overcome this limitation, we propose a graph-level edge representation learning scheme.

HyperCluster We first introduce HyperCluster, which is a novel edge clustering method to coarsen
similar edges into a single edge, for obtaining the global edge representation. Generally, a clustering
scheme for nodes of the graph [58, 5] is defined as follows:

Xpool = CTX′, Mpool = CTM , (5)

where Xpool ∈ Rnpool×d and Mpool ∈ Rnpool×m denote the pooled representations, X′ =
GNN (X,M ,E) ∈ Rn×d is the updated node features, and C ∈ Rn×npool is the cluster assignment
matrix that is generated from the X′. Following this approach, the proposed HyperCluster clusters
similar edges into a single edge, by clustering nodes of the dual hypergraph obtained from the
original graph via DHT. In other words, we first obtain the node representation of the dual hypergraph
E′ = EHGNN (X,M ,E) ∈ Rm×d′

, and then cluster the nodes of the dual hypergraph as follows:

Epool = CTE′ , (Mpool)T = CTMT (6)

where Epool ∈ Rmpool×d′
and Mpool ∈ Rn×mpool denote the pooled edge representation and the

incidence matrix of the input graph respectively, and C ∈ Rm×mpool is the cluster assignment
matrix generated from the input edge features E′. Since HyperCluster coarsens the edges rather than
dropping them, this edge pooling method is more appropriate for tasks such as graph reconstruction.

HyperDrop We propose another edge pooling scheme, HyperDrop, which drops unnecessary edges
to identify task-relevant edges, while performing lossless compression of nodes. Conventional node
drop methods [15, 33] remove less relevant nodes based on their scores, as follows:

Xpool = Xidx , M
pool = Midx ; idx = topk(score(X)), (7)

where idx is the row-wise (i.e., node-wise) indexing vector, score(·) computes the score of each node
with learnable parameters, and topk(·) selects the top k elements in terms of the score. However,
this approach results in the inevitable loss of node information, as it drops nodes. Thus, we propose
to coarsen the graph by dropping edges instead of nodes, exploiting edge representations obtained
from our EHGNN. HyperDrop selects the top-ranked edges of the original graph, by selecting the
top-ranked nodes of the dual hypergraph. The pooling procedure for HyperDrop is as follows:

Epool = Eidx , (M
pool)T = (MT )idx ; idx = topk (score(E)). (8)

Then, we can obtain the pooled graph Gpool = (X,Mpool,Epool) by applying DHT to the pooled
dual hypergraph. HyperDrop is most suitable for graph classification tasks, as it identifies discrim-
inative edges for the given task. Since HyperDrop preserves the nodes intact, it can also be used
for node-level classification tasks, which is impossible with exiting graph pooling methods that
modify nodes. In another point of view, the proposed HyperDrop can be further considered as a
learnable graph rewiring operation, which optimizes the graph for the given task by deciding whether
to drop or maintain the nodes. Finally, a notable advantage of such HyperDrop is that it alleviates
the over-smoothing problem in deep GNNs [35] (i.e., the features of all nodes converge to the same
values when stacking a large number of GNN layers). As HyperDrop learns to remove unnecessary
edges, the message-passing only happens across relevant nodes, which alleviates over-smoothing.
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Figure 3: Edge reconstruction results on the ZINC molecule
dataset by varying the pooling ratio. Solid lines denote the mean,
and shaded areas denote the standard deviation of 5 runs.
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Figure 4: Edge reconstruction results of
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Figure 5: Graph reconstruction results on the ZINC molecule
dataset by varying the pooling ratio. Solid lines denote the mean,
and shaded areas denote the standard deviation of 5 runs.
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Figure 6: Graph reconstruction examples.
Red dashed circles and squares indicate the
incorrectly predicted edges and nodes, re-
spectively. (c.2) shows the assigned clusters
of edges as colors using our method.

4 Experiments
We experimentally validate the effectiveness of EHGNN coupled with either HyperCluster or Hyper-
Drop on four different tasks: graph reconstruction, generation, classification, and node classification.

4.1 Graph reconstruction

Accurately reconstructing the edge features is crucial for graph reconstruction tasks, and thus we
validate the efficacy of our method on graph reconstruction tasks first.

Experimental setup We first validate our EHGNN with HyperCluster on the edge reconstruction
tasks, where the goal is to reconstruct the edge features from their compressed representations. Then,
we evaluate our method on the graph reconstruction tasks to validate the effectiveness of ours in
holistic graph-level learning. We start with edge reconstruction of a synthetic two-moon graph, where
node features (coordinates) are fixed and edge features are colors. For edge and graph reconstruction
of real-world graphs, we use the ZINC dataset [27] that consists of 12K molecular graphs [9], where
node features are atom types and edge features are bond types. We use accuracy, validity, and exact
match as evaluation metrics. For more details, please see Appendix C.1.

Implementation details and baselines We compare the proposed EHGNN framework against
edge-aware GNNs, namely EGCN [22], MPNN [17], R-GCN [45], and EGNN [18], which use the
edge features as auxiliary information for updating node features. We further combine them with
an existing graph pooling method, namely GMPool [2], to obtain a graph-level edge representation
for a given graph. In contrast, for our method, we first obtain edge representations with EHGNN,
using GCN [32] as the message-passing function, and then coarsen the edge-wise representations
using HyperCluster, whose cluster assignment matrices are obtained using GMPool [2]. For node
reconstruction, we set message-passing to GCN and graph pooling to GMPool [2] for all models. We
provide further details of the baselines and our model in Appendix C.1.

Edge reconstruction results Figure 4 shows the original two-moon graph and edge-reconstructed
graphs, where edge features are represented as colors, exhibiting clustered patterns. The baselines
fail to reconstruct the edge colors, since they implicitly learn edge representations by using edge
features as auxiliary information to update nodes, hence mixing the colors of the neighboring edges.
On the other hand, our method distinguishes each edge cluster, which shows that our method can
capture meaningful edge information by clustering similar edges. Moreover, as shown in Figure 3,
our model obtains significantly higher performance over all baselines on the edge reconstruction task
of molecular graphs, in all evaluation metrics. The performance gain of our method over baselines
is notably large in exact match, which demonstrates that explicit learning of edge representation is
essential for the accurate encoding of the edge information.
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Figure 7: Graph generation results on MolGAN.
Solid lines denote the mean, and shaded areas denote
the standard deviation of 3 different runs.

Dataset Metrics MARS [55] MARS + EHGNN (Ours)

ZINC15

Success Rate 59.53 ± 2.11 64.30 ± 1.54
QED (≥ 0.67) 95.71 ± 0.09 96.36 ± 0.49

GSK3β (≥ 0.6) 86.52 ± 1.67 90.63 ± 2.57
JNK3 (≥ 0.6) 71.52 ± 4.15 73.60 ± 1.29

Table 2: Graph generation results on MARS. The
results are the mean and standard deviation of 3 differ-
ent runs. Best performance and its comparable results
(p > 0.05) from the t-test are highlighted in bold.

Graph reconstruction results To verify the effectiveness of learning accurate edge representations
for reconstructing both the node and edge features, we now validate our method on the molecular
graphs in Figure 5. Combining our edge representation learning method (EHGNN + HyperCluster)
with the existing node representation learning method (GCN + GMPool) yields incomparably high
reconstruction performance compared to the baselines in exact match, which demonstrates that
learning accurate edge representation, as well as node representation, is crucial to the success of the
graph representation learning methods on graph reconstruction.

Qualitative analysis We visualize the original and reconstructed molecular graphs in Figure 6. As
shown in Figure 6 (b), the baseline cannot reconstruct the ring structures of the molecule, whereas
our method perfectly reconstructs the rings as well as the atom types. The generated edge clusters in
Figure 6 (c.2) further show that our method captures the detailed substructures of the molecule, as
we can see the cluster patterns of hexagonal and pentagonal rings. More reconstruction examples of
molecular graphs are shown in Figure 13.
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Figure 8: Graph compression results.
For ours, we report the relative size to
the original graph where the edge recon-
struction accuracy is higher than 95%
and 75%, respectively.

Graph compression To validate the effectiveness of our
method in large and dense graph compression, we further ap-
ply EHGNN with HyperCluster to the Erdos-Renyi random
graph [10] having six discrete edge features, where the number
of nodes is fixed to 103 while the number of edges increases
from 103 to 104. In Figure 8, we report the relative mem-
ory size of the compressed graph after pooling the features,
against the size of the original graph. We compare our method
which compresses both the nodes and edges, against the node
pooling method, namely GMT [2]. As the number of edges
increases, we observe that compressing only the node features
is insufficient for obtaining compact representations, whereas
our method is able to obtain highly compact but accurate rep-
resentation which can be assured from the sufficiently high edge reconstruction accuracy. We believe
that our proposed framework can not only learn accurate representations of nodes and edges, but
also effectively compress their features, especially for large-scale real-world graphs, such as social
networks or protein-protein interaction (PPI) graphs.

4.2 Graph generation

As shown in Figure 1 (left), graph generation depends heavily on the edge representations, as the
model may generate incorrect graphs (e.g., toxic chemicals rather than drugs) if the edge information
is inaccurate. Thus, we further validate our EHGNN on the graph generation tasks.

Experimental setup We directly forward the edge representation from the EHGNN to molecule
generation networks, namely MolGAN [6] and MArkov moleculaR Sampling (MARS) [55]. Mol-
GAN uses the Generative Adversarial Network (GAN) [19], to generate the molecular graph by
balancing weights between its generator and discriminator. MolGAN uses R-GCN [45] for node-level
message-passing, whereas, for ours, we first obtain the edge representations using EHGNN, and
use them with mean pooling in the graph encoder. For evaluation metrics, we use the Synthetic
Accessibility (SA) and Druglikeness (QED) scores. We further apply EHGNN to MARS [55] that
generates the molecule by sequentially adding or deleting its fragment, with MCMC sampling. While
the original model uses MPNN [17] to implicitly obtain edge representations for adding and deleting
actions, we use EHGNN to explicitly learn edge representations. We train models to maximize four
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Table 3: Graph classification results. The results are the mean and standard deviation over 10 different runs.
Best performance and its comparable results (p > 0.05) from the t-test are highlighted in bold. Hyphen (-)
denotes out-of-resources that take more than 10 days. The results for the baselines are taken from Baek et al. [2].

TU : Biochemical TU : Social OGB : Molecule Average
D&D PROTEINS MUTAG IMDB-B IMDB-M COLLAB HIV Tox21 ToxCast BBBP

# graphs 1178 1113 188 1000 1500 5000 41127 7831 8576 2039
# classes 2 2 2 2 3 3 2 12 617 2
Avg # nodes 284.32 39.06 17.93 19.77 13.00 74.49 25.51 18.57 18.78 24.06
Avg # edges 715.66 72.82 19.79 96.53 65.94 2457.78 27.47 19.27 19.26 25.95

Set DeepSet 77.39 ± 0.67 68.95 ± 0.92 72.56 ± 1.09 72.42 ± 0.36 50.24 ± 0.32 75.27 ± 0.21 71.20 ± 1.26 72.25 ± 0.23 59.44 ± 0.39 63.64 ± 0.62 68.34

Naive GNN GCN 72.05 ± 0.55 73.24 ± 0.73 69.50 ± 1.78 73.26 ± 0.46 50.39 ± 0.41 80.59 ± 0.27 76.81 ± 1.01 75.04 ± 0.80 60.63 ± 0.51 65.47 ± 1.73 69.70
GIN 70.79 ± 1.17 71.46 ± 1.66 81.39 ± 1.53 72.78 ± 0.86 48.13 ± 1.36 78.19 ± 0.63 75.95 ± 1.35 73.27 ± 0.84 60.83 ± 0.46 67.65 ± 3.00 70.04

Global SortPool 75.58 ± 0.72 73.17 ± 0.88 71.94 ± 3.55 72.12 ± 1.12 48.18 ± 0.83 77.87 ± 0.47 71.82 ± 1.63 69.54 ± 0.75 58.69 ± 1.71 65.98 ± 1.70 68.49
GMT 78.72 ± 0.59 75.09 ± 0.59 83.44 ± 1.33 73.48 ± 0.76 50.66 ± 0.82 80.74 ± 0.54 77.56 ± 1.25 77.30 ± 0.59 65.44 ± 0.58 68.31 ± 1.62 73.07

Hierarchical

DiffPool 77.56 ± 0.41 73.03 ± 1.00 79.22 ± 1.02 73.14 ± 0.70 51.31 ± 0.72 78.68 ± 0.43 75.64 ± 1.86 74.88 ± 0.81 62.28 ± 0.56 68.25 ± 0.96 71.40
SAGPool 74.72 ± 0.82 71.56 ± 1.49 73.67 ± 4.28 72.55 ± 1.28 50.23 ± 0.44 78.03 ± 0.31 71.44 ± 1.67 69.81 ± 1.75 58.91 ± 0.80 63.94 ± 2.59 68.49
TopKPool 73.63 ± 0.55 70.48 ± 1.01 67.61 ± 3.36 71.58 ± 0.95 48.59 ± 0.72 77.58 ± 0.85 72.27 ± 0.91 69.39 ± 2.02 58.42 ± 0.91 65.19 ± 2.30 67.47
MinCutPool 78.22 ± 0.54 74.72 ± 0.48 79.17 ± 1.64 72.65 ± 0.75 51.04 ± 0.70 80.87 ± 0.34 75.37 ± 2.05 75.11 ± 0.69 62.48 ± 1.33 65.97 ± 1.13 71.56
ASAP 76.58 ± 1.04 73.92 ± 0.63 77.83 ± 1.49 72.81 ± 0.50 50.78 ± 0.75 78.64 ± 0.50 72.86 ± 1.40 72.24 ± 1.66 58.09 ± 1.62 63.50 ± 2.47 69.73
EdgePool 75.85 ± 0.58 75.12 ± 0.76 74.17 ± 1.82 72.46 ± 0.74 50.79 ± 0.59 - 72.66 ± 1.70 73.77 ± 0.68 60.70 ± 0.92 67.18 ± 1.97 -
HaarPool - - 66.11 ± 1.50 73.29 ± 0.34 49.98 ± 0.57 - - - - 66.11 ± 0.82 -

Ours HyperDrop 78.74 ± 0.68 75.30 ± 0.45 84.00 ± 0.69 73.96 ± 0.41 51.68 ± 0.41 81.29 ± 0.25 76.79 ± 0.86 76.95 ± 0.32 64.21 ± 0.70 69.04 ± 0.86 73.20
HyperDrop + GMT 78.39 ± 0.33 75.39 ± 0.26 85.72 ± 0.61 74.45 ± 0.61 51.45 ± 0.28 80.59 ± 0.33 77.84 ± 0.37 77.58 ± 0.43 65.15 ± 0.65 69.16 ± 1.04 73.57

molecule properties: inhibition scores against two proteins, namely GSK3β and JNK3 (biological);
QED and SA scores (non-biological). Then we report the success rate at which the molecule satisfies
all the properties. For more details, please see Appendix C.2.

MolGAN results Figure 7 shows the SA and QED scores of the generated molecules, of the Mol-
GAN architecture with different encoders. Our EHGNN framework obtains significantly improved
generation performance, over the original MolGAN which uses the R-GCN encoder and the MolGAN
with GMPool, a state-of-the-art global node pooling encoder. This is because EHGNN learns explicit
edge representation which enhances the ability of the discriminator to distinguish between real and
generated graphs. The improvement in the discriminator also leads to notably more stable results
compared to the baselines, which show a large variance in the quality of the generated molecules.

MARS results To perform correct editing actions to generate graphs with MARS, we need accurate
edge representations, as edges determine the structure of the generated molecule. Table 2 shows that
using our EHGNN achieves significantly higher generation performance over original MARS, which
uses edges as auxiliary information only to enhance node representations. Notably, performance
gain on the GSK3β inhibition score for which structural binding is important, suggests that accurate
learning of edges leads to generating more effective molecules that interact with the target protein.

4.3 Graph and node classification

Now, we validate the performance of our EHGNN with HyperDrop on classification tasks. Our
approach is effective for the classification of graphs with or without edge features, since it allows
lossless compression of nodes, and drops edges to allow message-passing only across relevant nodes.

Experimental setup Following the experimental setting of Baek et al. [2], we use the GCN as the
node-level message-passing layers for all models, and compare our edge pooling method against
the existing graph pooling methods. For this experiment, our HyperDrop uses SAGPool [33] on the
hypergraph, which is a node drop pooling method based on self-attention. We use 6 datasets from the
TU datasets [39] including three from the biochemical domains (i.e., DD, PROTEINS, MUTAG) and
the remaining half from the social domains (i.e., IMDB-BINARY, IMDB-MULTI, COLLAB). Also,
we further use the 4 molecule datasets (i.e., HIV, Tox21, ToxCast, BBBP) from the recently released
OGB datasets [22]. We evaluate the accuracy of each model with 10-fold cross validation [60] on the
TU datasets, and use ROC-AUC as the evaluation metric for the OGB datasets. For both datasets,
we follow the standard experimental settings, from the feature extraction to the dataset splitting. We
provide additional details of the experiments in Appendix C.3.

Baselines We compare our EHGNN with HyperDrop, against the set encoding (DeepSet [59]),
GNNs with naive pooling baselines (GCN and GIN [32, 56]), and state-of-the-art hierarchical pooling
methods (DiffPool [58], SAGPool [33], TopKPool [15], MinCutPool [5], ASAP [42], EdgePool [8],
and HaarPool [52]) that drop or coarsen node representations. We also additionally compare or
combine the state-of-the-art global node pooling methods (SortPool [60], GMT [2]) with our model,
for example, HyperDrop + GMT. For more details, see Appendix C.3.
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Model MUTAG PROTEINS Tox21

HyperDrop 84.00 ± 0.69 75.30 ± 0.45 76.95 ± 0.32
HyperCluster 84.50 ± 1.50 72.76 ± 1.12 76.68 ± 0.56

w/ RandDrop 83.06 ± 1.15 74.92 ± 0.51 76.39 ± 0.47
w/o HyperDrop 83.06 ± 1.20 75.08 ± 0.37 76.60 ± 0.45
w/o EHGNN 69.50 ± 1.78 73.24 ± 0.73 75.04 ± 0.80

Table 4: Ablation study of Hyper-
Drop on the MUTAG, PROTEINS,
and Tox21 datasets for classification.

Figure 9: Edge pooling results on
the COLLAB dataset. Colors de-
note connected components.
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Figure 10: Node classification re-
sults. Lines denote means over 10
runs and shades denote variances.

Classification results Table 3 shows that the proposed EHGNN with HyperDrop significantly
outperforms all hierarchical pooling baselines. This is because HyperDrop not only retains nodes
by removing edges that are less useful for graph discrimination, but also explicitly uses the edge
representations for graph classification. Since HyperDrop does not remove any nodes on the graph, it
can be jointly used with any node pooling methods, and thus, we pair HyperDrop with GMT. This
model largely outperforms GMT, obtaining the best performance on most of the datasets, which
demonstrates that accurate learning of both the nodes and edges is important for classifying graphs.
We further visualize the edge pooling process of HyperDrop in Figure 9, which shows that our method
accurately captures the substructures of the entire graph, which leads to dividing the large graph into
several connected components, thus adjusting the graph topology for more effective message-passing.
We provide more visual examples of edge drop procedures in Appendix D.3.

Ablation study To see how much each component contributes to the performance gain, we conduct
an ablation study on EHGNN with HyperDrop. Table 4 shows that, compared with a model that only
uses node features (i.e., w/o EHGNN), learning explicit edge representations significantly improves
performance. Our model EHGNN with HyperCluster, or without HyperDrop, or the model with
random edge drop obtains decent performance, but substantially underperforms HyperDrop.

Over-smoothing with deep GNNs Lastly, we demonstrate that our EHGNN with HyperDrop
alleviates the over-smoothing problem of deep GNNs on semi-supervised node classification tasks,
which is not possible for the existing node-based pooling methods. We follow the settings of existing
works [32, 50, 13] and provide the experimental details in Appendix C.4. As shown in Figure 10,
HyperDrop retains the accuracy as the number of layers increases, whereas the naive GCN or random
drop [43] results in largely degraded performance, since HyperDrop identifies and preserves the
task-relevant edges while the sampling-based methods randomly drop the edges. Further, our method
outperforms BatchNorm which alleviates over-smoothing by yielding differently normalized feature
distribution at each batch. This is because HyperDrop splits the given graph into smaller subgraphs
that capture meaningful message-passing substructures as shown in Figure 9.

5 Conclusion

We tackled the problem of accurately representing the edges of a graph, which has been relatively
overlooked over node representation learning. To this end, we proposed a novel edge representation
learning framework using Dual Hypergraph Transformation (DHT), which transforms the edges of
the original graph into nodes on a hypergraph. This allows us to apply a message-passing scheme
for node representation learning, for edge representation learning. Further, we proposed two edge
pooling methods to obtain a holistic edge representation for a given graph, where one clusters similar
edges into a single edge for graph reconstruction and the other drops unnecessary edges for graph
classification. We validated our edge representation learning framework on graph reconstruction,
generation, and classification tasks, showing its effectiveness over relevant baselines.
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[10] P. Erdős and A Rényi. On the evolution of random graphs. In PUBLICATION OF THE
MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, pages
17–61, 1960.

[11] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[12] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[13] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

[14] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[15] Hongyang Gao and Shuiwang Ji. Graph u-nets. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 2083–2092. PMLR, 2019.

[16] Anna Gaulton, Anne Hersey, Michał Nowotka, A Patricia Bento, Jon Chambers, David Mendez,
Prudence Mutowo, Francis Atkinson, Louisa J Bellis, Elena Cibrián-Uhalte, et al. The chembl
database in 2017. Nucleic acids research, 45(D1):D945–D954, 2017.

[17] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pages 1263–1272. PMLR, 2017.

11

https://doi.org/10.5281/zenodo.1003158


[18] Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pages 9211–9219. Computer Vision Foundation / IEEE, 2019.

[19] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint,
arXiv:1406.2661, 2014.

[20] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA,
pages 1024–1034, 2017.

[21] Frank Harary and R. Z. Norman. Some properties of line digraphs. Rendiconti del Circolo
Matematico di Palermo, 9:161–168, 1960.

[22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint, arXiv:2005.00687, 2020.

[23] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and
Jure Leskovec. Strategies for pre-training graph neural networks. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[24] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Vijay S. Pande Percy Liang, and
Jure Leskovec. Strategies for pre-training graph neural networks. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[25] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin Benson. Combining label
propagation and simple models out-performs graph neural networks. In International Conference
on Learning Representations, 2021.

[26] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis R. Bach and David M. Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 448–456. JMLR.org,
2015.

[27] John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman.
ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model., 52(7):1757–1768,
2012.

[28] Xiaodong Jiang, Pengsheng Ji, and Sheng Li. Censnet: Convolution with edge-node switching
in graph neural networks. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 2656–2662.
ijcai.org, 2019.

[29] Xiaodong Jiang, Pengsheng Ji, and Sheng Li. Censnet: Convolution with edge-node switching
in graph neural networks. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019,
pages 2656–2662. ijcai.org, 2019.

[30] Hiroshi Kajino. Molecular hypergraph grammar with its application to molecular optimization.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 3183–3191. PMLR, 2019.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint,
arXiv:1412.6980, 2014.

12



[32] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, 2017.

[33] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 3734–3743.
PMLR, 2019.

[34] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA,
August 21-24, 2005, pages 177–187. ACM, 2005.

[35] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pages 3538–3545. AAAI Press, 2018.

[36] Jose Lugo-Martinez and Predrag Radivojac. Classification in biological networks with hyper-
graphlet kernels. arXiv preprint, arXiv:1703.04823, 2017.

[37] Federico Monti, Oleksandr Shchur, Aleksandar Bojchevski, Or Litany, Stephan Günnemann,
and Michael M. Bronstein. Dual-primal graph convolutional networks. arXiv preprint,
arXiv:1806.00770, 2018.

[38] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint, arXiv:2007.08663, 2020.

[39] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural
networks for graphs. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and
Conference Proceedings, pages 2014–2023. JMLR.org, 2016.

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

[41] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7,
2014.

[42] Ekagra Ranjan, Soumya Sanyal, and Partha P. Talukdar. ASAP: adaptive structure aware
pooling for learning hierarchical graph representations. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 5470–5477.
AAAI Press, 2020.

[43] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[44] Edward Scheinerman and Daniel Ullman. Fractional graph theory: a rational approach to the
theory of graphs. Courier Coporation, 2011.

13



[45] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In The Semantic
Web - 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018,
Proceedings, volume 10843 of Lecture Notes in Computer Science, pages 593–607. Springer,
2018.

[46] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-
Rad. Collective classification in network data. AI Mag., 29(3):93–106, 2008.

[47] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 29–38. IEEE Computer Society,
2017.

[48] Teague Sterling and John Irwin. Zinc 15 - ligand discovery for everyone. Journal of chemical
information and modeling, 55, 10 2015. doi: 10.1021/acs.jcim.5b00559.

[49] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha P. Talukdar. Composition-based
multi-relational graph convolutional networks. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[50] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018.

[51] Yu Guang Wang and Xiaosheng Zhuang. Tight framelets on graphs for multiscale data analysis.
In Dimitri Van De Ville, Manos Papadakis, and Yue M. Lu, editors, Wavelets and Sparsity XVIII,
volume 11138, pages 100 – 111. International Society for Optics and Photonics, SPIE, 2019.

[52] Yu Guang Wang, Ming Li, Zheng Ma, Guido Montúfar, Xiaosheng Zhuang, and Yanan Fan.
Haarpooling: Graph pooling with compressive haar basis. arXiv preprint arXiv:1909.11580,
2019.

[53] B. Yu. Weisfeiler and A. A. Leman. Reduction of a graph to a canonical form and an algebra
arising during this reduction. 1968.

[54] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

[55] Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li.
Mars: Markov molecular sampling for multi-objective drug discovery. arXiv preprint,
arXiv:2103.10432, 2021.

[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[57] Yulei Yang and Dongsheng Li. NENN: incorporate node and edge features in graph neural
networks. In Proceedings of The 12th Asian Conference on Machine Learning, ACML 2020,
18-20 November 2020, Bangkok, Thailand, volume 129 of Proceedings of Machine Learning
Research, pages 593–608. PMLR, 2020.

[58] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages 4805–
4815, 2018.

[59] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov,
and Alexander J. Smola. Deep sets. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 3391–3401, 2017.

14



[60] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 4438–4445. AAAI Press,
2018.

[61] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph
neural networks: A review of methods and applications. arXiv preprint, arXiv:1812.08434,
2018.

15



Appendix

Organization The appendix is organized as follows. In section A, we first describe the structural
details of the proposed Edge HyperGraph Neural Network (EHGNN) framework using the Dual
Hypergraph Transformation (DHT) in comparison to those of the existing edge-aware graph neural
networks. Also, we describe the detailed components of the proposed edge pooling methods:
HyperCluster and HyperDrop in section B. We provide the experimental setups in Section C, which
include the detailed descriptions of the models and datasets, as well as the experimental details for
each task. Then, we provide additional experimental results on graph reconstruction and generation
tasks with visualization of examples in Section D. Finally, We discuss the limitations and potential
societal impacts of our work in Section E.

A Edge Representation Learning
In this section, we first describe the detailed formulations of existing edge-aware graph neural
networks (GNNs), and compare them with our methods. Then, we introduce the time complexity of
making connectivity patterns for edges using existing edge-aware GNNs and our Edge HyperGraph
Neural Network (EHGNN). Finally, we discuss the sparse implementation of the proposed EHGNN
along with our Dual Hypergraph Transformation (DHT) at this end of the section.

A.1 Discussion on edge-aware graph neural networks

Here, we first formalize the existing edge-aware GNNs that we used as baselines [23, 17, 45, 18]. We
begin by introducing the basic components of GNNs: X(l) denotes the node features at l-th layer, W
denotes the learnable weight matrix, E denotes the edge features, and N (v) denotes the neighboring
node set of node v in the given graph.

EGCN The node-wise formulation of edge-aware GCN [23] is defined as follows:

X(l+1)
v = W

∑
u∈N (v)∪{v}

nu,v · (X(l)
u +Eu,v) (9)

where nu,v is the normalizing coefficient for two adjacent nodes u and v, and edge feature E is
obtained from the categorical edge features without learning.

MPNN The node-wise formulation of MPNN [17] using edge conditioned convolution [47] is
defined as follows:

X(l+1)
v = WX(l)

v +
∑

u∈N (v)

X(l)
u ·MLP(Eu,v) (10)

where MLP is a linear layer for learning the edge representations to augment the node representations.

R-GCN The node-wise formulation of R-GCN [45] is defined as follows:

X(l+1)
v = WX(l)

v +
∑
r∈R

∑
u∈Nr(v)

1

|Nr(v)|
WrX

(l)
u (11)

whereR is a set of categorical edge types, andNr(v) denotes the neighboring node set of the node v,
having the associated edge type r ∈ R.

EGNN The node-wise formulation of convolution-based edge GNN [18] is defined as follows:

X(l+1)
v = W

∑
u∈N (v)∪{v}

E(l)
u,vX

(l)
u (12)

where the edge features at l-th layer E(l) are obtained by edge-level layers which are differently
designed from node-level layers. The features are used as the attention coefficients for nodes to
enhance the node-level representations.

It is worthwhile to note that all baselines only implicitly capture edge information in the learned
node representations rather than directly using it for downstream graph tasks, while our EHGNN
framework explicitly learns and utilizes the learned edge representations.
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# of edges (103) 2 4 8 16 32 64

Line graph 32.78 65.93 131.36 260.92 527.44 1071.31

DHT (ours) 0.13 0.18 0.26 0.45 0.81 1.37

Table 5: Transformation time(s) results of the line graph and
our dual hypergraph. The results are the average of over 100 runs.

Graph Message-passing
Nodes (GCN) Edges (Ours)

Erdos-Renyi 0.0031 0.0034

Barabasi-Albert 0.0029 0.0032

Table 6: Message-passing time(s) on the
original graph and our dual hypergraph.

A.2 Sparse implementation of the dual hypergraph transformation

Since most graphs have relatively few connections per node, the number of non-zero elements in the
adjacency matrix, which defines the connection among nodes, is smaller than the number of zero
elements. Thus, using the adjacency matrix for message passing is highly inefficient in terms of
memory usage. To handle this issue, the most dominant approach is to use an edge list, which is a
sparse representation of the adjacency matrix (or the incidence matrix) of the graph. Specifically, each
column of the edge list L ∈ R2×m denotes an edge e, which has two incident nodes (vstart, vend),
where vstart denotes the start node and vend denotes the end node of the edge e.

Similarly, the incidence matrix of a hypergraph can be represented as a sparse form using a hyperedge
list L∗ ∈ R2×D, where D is the sum of degrees of all nodes in the hypergraph. Each column of L∗
indicates a hyperedge e∗ with a (node, hyperedge) pair (v∗, e∗), where v∗ is the node incident to the
hyperedge e∗. If the hyperedge is incident to three nodes, then it will appear on three columns of L∗
paired with each incident node. Compared to this general hypergraph, the dual hypergraph obtained
by DHT is 2-regular, which means each node in the hypergraph has a degree of two, since each edge
in the original graph is incident to exactly two nodes. Thanks to this property, the hyperedge list of
the dual hypergraph has the dimensionality of 2× 2m (i.e., L∗ ∈ R2×2m).

Then, the concrete implementation of DHT with the sparse edge list of the original graph and the
sparse hyperedge list of its dual hypergraph is formalized as follows:

DHT : G =
(
X,L,E

)
7→ G∗ =

(
E,L∗,X

)
, (13)

where the hyperedge list L∗ is obtained by reshaping the edge list L as follows:

L∗1,2i−1 = L∗1,2i = i, (14)

L∗2,2i−1 = L1,i , L∗2,2i = L2,i, (15)

for all 1 ≤ i ≤ m.

A.3 Complexity analysis

In this subsection, we provide the detailed complexity analysis of transformation and message-
passing operations of existing edge-aware GNNs [28, 18, 57] and our DHT. We first introduce the
transformation complexity, and then describe the message-passing complexity.

Transformation complexity To define the adjacency of edges to perform message-passing between
edges, previous works either define the edge neighborhood structure [57], or use the line graph
transformation [28]. Constructing edge neighborhood takes O(m2) for transforming the node
adjacency to the edge adjacency, as, for verifying two edges are adjacent, we need to first sample one
edge among m edges, and then find the other edge that shares the same node among the remaining
m − 1 edges. In a similar manner, the complexity of line graph transformation is quadratic to the
number of edges Monti et al. [37], as, for each pair of edges, we need to verify whether they share
the same node. However, with our sparse implementation of DHT explained in A.2, we can obtain
the hyperedge list – a sparse data structure of the hypergraph – by simply reshaping the given edge
list of the original graph, which takes at most O(m).

We further experimentally verify the transformation complexity of the line graph transformation [28]
and the proposed DHT, on Erdos-Renyi graph [10] with 1000 nodes and the number of edges
increasing from 2× 103 to 64× 103. As shown in Table 5, our DHT is highly efficient compared to
the line graph transformation, especially for large and dense graphs, as the line graph transformation
is quadratic to the number of edges, whereas ours only requires simple tensor-reshape operations.
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Message-passing complexity Note that the complexity of message-passing on the graphs depends
only on the number of edges, thus it is enough to focus on the number of edges. When we transform
the original graph into the line graph following Jiang et al. [28], the constructed line graph has
O(m ·dmax) edges, therefore the complexity of message-passing isO(m ·dmax). For instance, when
the input graph is a star graph having one hub node and n other nodes (i.e., the number of edges is n),
the line graph of the star graph has n2 number of edges, thus the message-passing cost is O(n2), as
shown in Table 1 of the main paper. However, with our DHT implemented over the sparse hyperedge
list, we only have 2m number of node-hyperedge pairs as explained in Section A.2, thus we can
perform the message-passing between edges (nodes of the dual hypergraph) with complexity O(m).
This complexity is equal to that of the message-passing between nodes of the original graph. In other
words, the analytical complexity of message-passing between edges in equation 4 of the main paper
is equivalent to the complexity of message-passing between nodes in equation 1 of the main paper.

We experimentally validate the message-passing complexity on the original graph (message-passing
between nodes) and the dual hypergraph (message-passing between edges) in Table 6. We evaluate
the message-passing time on both the Erdos-Renyi graph [10] and the scale-free (Barabasi-Albert)
network [3], with 3000 nodes 11984 edges following the densification law (i.e. m ∝ n1.18 [34]) of
the internet graph. Table 6 shows that message-passing time on the dual hypergraph is almost equal
to the message-passing time on the original graph, which coincides with the previous analysis.

B Details for Edge Pooling Schemes
In this section, we describe the proposed two novel edge pooling schemes: HyperCluster that
coarsens similar edges for global edge representations, and HyperDrop that drops unnecessary edges
for hierarchical graph representations.

B.1 HyperCluster

Our cluster-based edge pooling model, HyperCluster, consists of edge-level message passing layers
(i.e., EHGNN layers) and HyperCluster layers, which we describe below in detail. Before clustering
edges, we first update the edge features using multiple EHGNN layers as follows:

E(l+1) = EHGNN(X,M ,E(l)), (16)

where E(l) denotes the updated edge features at the l-th layer from the initial edge features E(0) = E,
and we finally obtain E′ = E(L) after L number of EHGNN layers. Then, to obtain the global
edge representation of the entire graph, we cluster the nodes of its dual hypergraph using the node
clustering method. While we can use any off-the-shelf node clustering methods [58, 5, 2], in this
paper, we use the state-of-the-art pooling method, namely GMPool [2]. To apply GMPool on a
hypergraph, we modify the graph multi-head attention block (GMH), which is used to construct key
and value matrices using GNNs for the original graph structure in the GMPool paper [2], for the
hypergraph structure by replacing the adjacency matrix to the incidence matrix. We compress m
nodes in the dual hypergraph into k nodes with the modified GMPoolk, formalized as follows:

Epool = GMPoolk(E′,MT ), Mpool = MC, (17)

where C is the cluster assignment matrix generated by GMPool. The overall architecture can be
either global or hierarchical, depending on the downstream task.

B.2 HyperDrop

Our drop-based edge pooling model, HyperDrop, consists of EHGNN layers and HyperDrop layers,
which we describe below in detail. Before dropping unnecessary edges, we first update the edge
features using the proposed EHGNN layer as follows:

E′ = EHGNN(X,M ,E). (18)

Then, we drop the nodes of the dual hypergraph based on a learnable score function. While we can
use any off-the-shelf node drop methods [15, 33] with their score functions, in this paper, we use the
self-attention score based node drop method proposed in Lee et al. [33] as follows:

Z = tanh(GNN(E′,MT ,X)) (19)
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Based on the output score vector Z ∈ Rm for every m nodes on the dual hypergraph, we select the
top-ranked k nodes to obtain the pooled edge features and the incidence matrix as follows:

Epool = E′
idx , Mpool = ((MT )idx)

T ; idx = topk (Z) . (20)

Thus, we obtain the edge-pooled graphGpool = (X,Mpool,Epool) without loss of node information
of the original graph. Furthermore, we use the self-attention score vector Z as the edge weight for the
node-level message passing layer, to reflect the relative importance of the neighboring information.
This can be formulated as follows:

X′ = GNN
(
X,Mpool,Zidx

)
, (21)

where we can use simple GCN [32] or edge-aware GNNs for the GNN function.

C Experimental Setup
In this section, we introduce baselines and proposed models that we used for verifying the effective-
ness of our approaches, in two different paragraphs: one for message passing methods and another
for graph pooling methods, and then provide the information of the computing resources. After that,
we describe the experimental details about four different tasks on which we validate our methods.

Baselines and our model for graph neural networks Here, we describe a set encoding model
that ignores connectivity between nodes, naive graph neural networks that only consider node features
without edge information, edge-aware graph neural networks that use edge features as auxiliary
information for updating node features, and our model that explicitly represents edges as follows:

1. DeepSet. This method [59] is the set encoding baseline that first represents each node with a
linear function, and then aggregates all node representations with sum pooling, which does not
consider connectivity patterns between nodes.

2. GCN. This method [32] is the naive graph neural network baseline that aggregates neighboring
nodes’ information using the mean operation, which does not consider edge information. Also,
we obtain the entire graph representation using the mean pooling of all nodes.

3. GIN. This method [56] is the naive graph neural network baseline that aggregates neighboring
node’s information using the sum operation, which does not consider edge information. Also, we
obtain the entire graph representation using the sum pooling of all nodes.

4. EGCN. This method [22] is the edge-aware graph neural network baseline that uses edges as auxil-
iary information only to augment node-level representations, by adding the edge features between
a node and its neighborhood to the node features (see Section A.1 for detailed formulation).

5. MPNN. This method [17] is the edge-aware graph neural network baseline that uses edges as
auxiliary information only to augment the node-level representations, by multiplying the edge
features between a node and its neighborhood to the node feature (see Section A.1 for details).

6. R-GCN. This method [45] is the edge-aware graph neural network baseline that uses discrete
edge features for considering relation types between nodes, by multiplying the categorical weights
of edges to the node features (see Section A.1 for detailed formulation).

7. EGNN. This method [18] is the edge-aware graph neural network baseline that first obtains explicit
edge representations using differently designed edge-level layer, and then uses them to augment
node-level representations, by multiplying the edge representations to the node representations
(see Section A.1 for detailed formulation).

8. EHGNN. This is our edge representation learning framework that first transforms the given
original graph into its dual hypergraph with Dual Hypergraph Transformation, and then obtain
the explicit edge representations with existing off-the-shelf message-passing schemes for nodes,
which is further directly used for graph-level representation learning.

Baselines and our model for graph pooling Here, we explain the global node pooling baselines,
as well as the hierarchical node pooling baselines. Then, we describe the proposed two novel edge
pooling schemes: cluster-based and drop-based methods, for graph-level representation learning.

1. DiffPool. This method [58] is the hierarchical node pooling baseline that coarsens nodes with a
clustering-based approach, where it generates a cluster-assignment matrix for nodes using a GNN.
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2. SAGPool. This method [33] is the hierarchical node pooling baseline that drops unnecessary
nodes with a drop-based approach, where it generates scores for nodes with a GNN.

3. TopKPool. This method [15] is the hierarchical node pooling baseline that drops unnecessary
nodes with a drop-based approach, where it generates scores for nodes with MLPs.

4. MinCutPool. This method [5] is the hierarchical node pooling baseline that coarsens nodes with a
clustering-based approach, where it generates a cluster-assignment matrix for nodes using MLPs.

5. ASAP. This method [42] is the hierarchical node pooling baseline that first clusters similar nodes,
then drop unnecessary clusters to coarsen an entire graph.

6. EdgePool. This method [8] is the hierarchical node pooling baseline that computes the edge score
between nodes, then contracts two adjacent nodes with the high edge score into a single node.

7. HaarPool. This method [52] is the hierarchical node pooling baseline that coarsens nodes with
the Haar transformation, which is based on the Haar basis in the Haar wavelet domain [51].

8. SortPool. This method [60] is the global node pooling baseline that first sorts the obtained node
representations at the end of graph convolution layers, then predicts an entire graph representation
with sorted node features.

9. GMPool. This method [2] is the global node pooling baseline that uses self-attention based
operations to compress multiple nodes into a few clusters with learnable cluster assignment
vectors to obtain an entire graph representation.

10. GMT. This method [2] is the global node pooling baseline that stacks self-attention based layers
not only to compress many nodes into a few clusters with learnable cluster assignment vectors, but
also to consider the inter-node (or cluster) relationships to obtain an entire graph representation.

11. HyperCluster. This is our global edge representation learning scheme that coarsens similar edges
into a single edge to obtain a holistic edge-level representation, where we can generate the cluster
assignment matrix for edges using existing clustering-based methods, such as GMPool [2] (see
Section B.1 for more details).

12. HyperDrop. This is our hierarchical edge representation learning scheme that drops unnecessary
edges based on a learnable score function, such as MLPs or GNNs, thereby adjusting the graph
topology for more effective message passing. Notably, this scheme does not result in the removal
of any nodes. (see Section B.2 for more details).

Computing resources For all experiments, we use PyTorch [40] and PyTorch geometric [14], and
train each model on a single Titan XP, GeForce GTX Titan X, or GeForce RTX 2080 Ti GPU. A
single experiment of each task takes less than 1 day, and for the classification tasks such as node or
graph classification, the single runtime on most datasets of a relatively small size is less than 1 hour.

C.1 Graph reconstruction

Common implementation details Given a set of graphs {G = (X,M ,E)}, the goal of graph
reconstruction is to reconstruct both node and edge features from the compressed representations,
by training two separate autoencoders where one is trained for reconstructing node features and the
other is trained for reconstructing edge features. Formally, we define the node and edge encoders
as ENCnode and ENCedge, respectively, and the node and edge decoders as DECnode and DECedge,
respectively. Then, following the standard architecture setting of graph reconstruction tasks of
existing works [5, 2], the node-level autoencoder which is a pair of the node encoder and node
decoder, ENCnode and DECnode, is defined as follows:

ENCnode(X,M ,E) = GMPool(GNN(GNN(X,M ,E))) = Xpool, (22)

DECnode(X
pool,M ,E) = GNN(GNN(GNN(GMPool−1(Xpool,M ,E)))) = Xrec, (23)

where we use the GMPool [2] for reconstructing node features, as it shows outstanding performance
on node-level reconstruction tasks. GMPool denotes the pooling operation, and GMPool−1 denotes
the unpooling operation following the setting of the original paper [2]. Also, Xrec ∈ Rn×d is the
reconstructed node features from the pooled node representations Xpool ∈ Rk×d, where k is the
number of pooled nodes and n is the number of all nodes. We omit the inputs of the GNN, which are
the incidence matrix M and the edge feature matrix E, for simplicity.
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However, to reconstruct the entire graph which have both node and edge features, we further need to
define a separate edge-level autoencoder. Thus, similarly to the node-level autoencoder, we define
the edge-level reconstruction module as a pair of the edge encoder and edge decoder, ENCedge and
DECedge, formalized as follows:

ENCedge(X,M ,E) = Pool(GNN(GNN(X,M ,E))) = Epool, (24)

DECedge(X,M ,Epool) = GNN(GNN(GNN(Pool−1(X,M ,Epool)))) = Erec, (25)

where, for our models, we use the EHGNN with the GCN [32] for GNN operations, and HyperCluster
for pooling and unpooling operations which is described in Section B.1 in detail. Meanwhile, for
the baselines, we use the existing edge-aware GNNs [23, 17, 45, 18] for GNN operations, and
GMPool [2] for pooling and unpooling operations, where we obtain the final edge representation
by averaging the two representations of incident nodes for the edge. This is because the baselines
only use edge features as auxiliary information for updating node features. Erec ∈ Rm×d′

is the
reconstructed edge features from the pooled edge representations Epool ∈ Rk′×d′

, where k′ is the
number of pooled edges andm is the number of all edges. Similar to the formulation of the node-level
autoencoder, we omit the inputs of the GNN for simplicity.

Our reconstruction objective is to minimize the discrepancy between the original graph G =
(X,M ,E) and the reconstructed graph Grec = (Xrec,M ,Erec), with a loss function such as
mean squared error or cross-entropy loss for node and edge features. For the edge reconstruction
task, we only use the edge autoencoder without using the node autoencoder. For all reconstruction
experiments, the learning rate of the node autoencoder is set to 5× 10−3, and the learning rate of the
edge autoencoder is set to 1× 10−3. We optimize the full network using an Adam optimizer [31].

Implementation details on synthetic graphs For the edge reconstruction of a synthetic graph,
we use the standard two-moon graph generated by the PyGSP library [7], with node features given
by their coordinates and edge features given by RGB colors of which values range from 0 to 1.
Then, the goal of the edge reconstruction task is to restore all edge colors from the compressed edge
representations after edge pooling. To minimize the discrepancy between original and reconstructed
edge features, we use the mean squared error loss as the learning objective. Also, we use the early
stopping criterion, where we stop the training if there is no further improvement on the training loss
during 1,000 epochs, and the maximum number of epochs is set to 5,000. We set the pooling ratio of
all models as 1% with the hidden dimension of size 16.

Implementation details on molecular graphs Following the experimental setting of the existing
work [9, 2], we use the subset of the full ZINC dataset [27], which consists of 12K molecular graphs,
where node features are atom types and edge features are bond types. The number of atom types is
28, and the number of bond types is 5. We follow the dataset splitting of training, validation, and test
sets from Dwivedi et al. [9]. Then, the goal of the molecular graph reconstruction task is to restore
both atom types and bond types of all nodes and edges from their compressed representations after
pooling. To train the model, we use the cross-entropy loss for molecular graph reconstruction, since
the initial features given for nodes and edges are discrete. We also use the early stopping criterion,
where we stop the training if there is no further improvement on the validation loss during 200 epochs.
For hyperparameters, the maximum number of epochs is set to 500, hidden dimension size is set to
32, and batch size is set to 128. We run five experiments with different random seeds, and report the
average performance with its standard deviation. Following the evaluation setup of Baek et al. [2],
we use the following three metrics: accuracy measures the classification accuracy of all nodes and
edges, validity counts the number of reconstructed molecules which are chemically valid, and exact
match counts the number of reconstructed molecules which are identical to the original molecules.

Implementation details on graph compression We quantitatively compare the relative memory
size of the compressed graph after pooling nodes and edges against the size of the original graph,
which we use the Erdos-Renyi random graph model [10]. We compare our proposed method EHGNN
with HyperCluster, with the node pooling baseline, GMT. The number of nodes is fixed to 103, while
the number of edges is selected from one of 103, 5× 103, and 104. To obtain the features of nodes
and edges, we first randomly assign one of three values to each node (i.e., one among {0, 1, 2}), and
then generate edge features using the values of two adjacent nodes for each edge. For example, if two
nodes have the same 0 value for the incident edge, then we assign the zero value to the edge feature.
Since the total number of pairs of node values is six for the undirected graph, the number of edge
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features is six. The node pooling ratio is equally fixed to 15% for both GMT and our model, and we
report the relative size of the entire graph with the edge reconstruction accuracy higher than 95% or
75%, where the edge pooling ratio is decided according to its accuracy.

C.2 Graph generation

Implementation details on MolGAN architectures We use the QM9 dataset [41] that contains
133,885 organic compounds, where each molecular graph consists of carbon (C), oxygen (O), nitrogen
(N), and fluorine (F) with up to nine non-hydrogen atoms. To evaluate the generated molecular graphs,
we use the normalized Synthetic Accessibility (SA) and Druglikeness (QED) scores following the
evaluation setup of the original paper [6]. Also, we use the categorical re-parameterization trick with
the Gumbel-softmax function during the discretization process of molecule generation, to train the
model in an end-to-end fashion, which adapts the learning scheme of the original paper [6].

In the original MolGAN [6], R-GCNs [45] are used to encode feature representations of nodes for
the discriminator and reward networks. Learning rates of the generator, the discriminator, and the
reward network are equally set to 1× 10−3, and hidden sizes of the two-layer R-GCNs are 128 and
64. For the MolGAN with GMPool (MolGAN + GMPool) setting, the GMPool, which is the global
node pooling baseline, is additionally used to obtain the compact node-level representations. The
tanh activation function is used for GMPool. For the MolGAN with the proposed EHGNN (MolGAN
+ EHGNN) setting, we use two EHGNN layers to encode the feature representations of the edges,
wherein we use the GCN as the edge-level message-passing function. The hidden sizes are set to 32
and 16. After obtaining the edge-level representations, we use mean pooling to obtain the global edge
representation, which is forwarded to the discriminator and reward networks. We further combine the
GMPool with the MolGAN + EHGNN combination (MolGAN + GMPool + EHGNN) to additionally
enhance the global graph representation with both node and edge representations. The learning rate
of the EHGNN parameters in the discriminator and reward networks is set to 1 × 10−2. Also, all
the models use Adam optimizer [31] for training. Regarding other settings, we strictly follow the
original MolGAN paper [6], and use the available code3.

Table 7: Statistics of fragment vo-
cabularies of ZINC15 and ChEMBL
datasets on MARS experiments.

ZINC15 ChEMBL
# of node types 9 9
Avg # of nodes 7.68 7.35
# of edge types 4 4
Avg # of edges 7.54 7.08

Implementation details on MARS architectures For the ex-
periments using the MARS architecture, we use the ZINC15 [48,
24] dataset, which contains 2 million molecules, and we use the
available data4 from Hu et al. [24]. Further, we provide additional
experimental results on the ChEMBL [16] dataset, which con-
sists of 1,488,640 molecules, in Section D.2. As the fragments
of molecular graphs are the basic building blocks for molecular
graph generation in the MARS [55], we build the fragment vo-
cabularies following the same procedure of the original MARS paper: fragments are built by breaking
a single bond of molecules from the given dataset, limiting the size of fragments to 10 atoms (see the
original paper [55] for more details on the generation process of fragment vocabularies). We report
the statistics of generated fragments from each dataset in Table 7.

The MARS model sequentially generates molecules by taking one of the addition or deletion actions
at each step, especially where this model uses the explicit edge representation on the deletion
actions. For a set of given graphs {G = (X,M ,E)}, the original MARS model obtains the edge
representation for the deletion actions as follows:

X′ = MPNN(X,M ,E)

E′
e = Concat(X′

u,X
′
v,MLP(Ee))

(26)

where MPNN is the edge-aware graph neural network described in the subsection C, an edge e is
incident to two nodes u and v, and E′

e is the output edge representation of the edge e. Compared to
this baseline that implicitly captures the edge representation on the learned node representation X′

with the concatenated edge representation through the naive MLP layer, for our model, we replace
the MLP layer with the proposed EHGNN to explicitly learn the edge representation via edge-level
message passing. For a fair comparison in terms of the number of parameters, we use the same
number of layers and embedding size for both MLP and EHGNN.

3https://github.com/yongqyu/MolGAN-pytorch
4http://snap.stanford.edu/gnn-pretrain/data/
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Following the experimental setup of the original MARS paper [55], we train the models to maximize
the sum of multiple scores: QED, SA, and target protein inhibition scores against GSK3β and JNK3,
respectively. For evaluation metrics, we measure the percentage of the generated molecules having
scores above a certain threshold for each property: QED≥ 0.67, SA≥ 0.67, and the inhibition scores
against GSK3β ≥ 0.6 and JNK3 ≥ 0.6. The success rate can measure the overall multi-objective
score by calculating the percentage of the generated molecules satisfying all four objectives. We also
report the suggested easier threshold from the original MARS paper [55]: QED ≥ 0.6, SA ≥ 0.67,
and the inhibition scores against GSK3β ≥ 0.5 and JNK3 ≥ 0.5, in Section D.2, where we see the
same tendency for the results of baseline and our model. For the experiment on ZINC15, we set the
learning rate of EHGNN parameters to 5× 10−3 with a cosine scheduler for learning rate warmup.
For the experiment on ChEMBL, we set the learning rate of EHGNN parameters to 3× 10−4. The
learning rate of other parameters in MARS is set to 3× 10−4, following the original paper [55]. We
use the available code6 from the original MARS paper.

C.3 Graph classification

Datasets We validate our models on ten different benchmark datasets including six from the TU
datasets [38] and four from the OGB datasets [22]. For a fair comparison of baselines and our model,
following the standard experimental setting of Errica et al. [12], we use the one-hot encoding of
atom types as initial node features in TU bio-chemical datasets (D&D, PROTEINS, MUTAG) and
one-hot encoding of node degrees as initial node features in TU social datasets (IMDB-B, IMDB-M,
COLLAB), if initial node features are not given in advance. Furthermore, if the initial edge features
are not given in advance, we set them to one uniformly. For the dataset splitting of the TU datasets,
we follow the standard training/test splits from Niepert et al. [39], Zhang et al. [60], Baek et al. [2],
and further divide the training set into training and validation sets by using the 10 percent of the
training data as validation data, as suggested by the fair comparison setup of Errica et al. [12]. For the
OGB datasets (HIV, Tox21, ToxCast), following the original dataset paper [23], we use the additional
atom and bond features for each graph, and follow the performance evaluation and data split setting
of Hu et al. [23]. The statistics of each dataset are provided in Table 3 of the main paper.

Implementation details We follow the standard experiment setting from Baek et al. [2] with the
same base architectures and hyperparameters for all models on all datasets5. Notably, we stack three
number of GCN layers as node-level message passing for all pooling models, including ours. For our
model, we use the GCN for the EHGNN layer, where we equally stack three number of EHGNN
layers to obtain the explicit edge representations, in parallel with node-level layers. Also, from the
explicitly learned edge representations, we drop edges with their scores at each edge-level layer,
which is described in section B.2 in detail. For the model HyperDrop + GMT, we apply the global
node pooling layer GMPool [2] after the HyperDrop layers to obtain the global representation. For
the hyperparameters of our HyperDrop, we set the hidden dimension of edges as 128 except the
COLLAB dataset, on which we set the hidden dimension as 16, since the COLLAB dataset has a large
number of edges compared to other datasets. Also, we randomly search for the edge drop ratio by
increasing the drop ratios from 5% to 75% with 5% increments. We report the average performances
and standard deviations of 10 runs with different random seeds on test datasets.

C.4 Node classification

To demonstrate HyperDrop’s effectiveness in alleviating the over-smoothing problem in deep GNNs,
we validate it on the semi-supervised node classification tasks.

Datasets We experiment on two benchmark datasets [46], namely Cora and Citeseer, which is the
citation network where nodes are documents and edges are citation links between documents. The
goal of the node classification task is to predict the class of the documents (nodes). The Cora dataset
consists of 2,708 nodes and 5,429 edges with 7 classes. Also, the Citesser dataset consists of 3,327
nodes and 4,732 edges with 6 classes. Node features for each dataset consist of bag-of-words for
each document. As the initial edge features are not given, we set them by concatenating the features
of two endpoints of the edge. We use the classification accuracy as an evaluation metric.

Implementation details For a fair evaluation of the semi-supervised node classification task, we
follow the standard experimental setting of existing works [32, 50, 13], from the node features to the

5https://github.com/JinheonBaek/GMT
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Figure 11: Additional edge reconstruction results with TopKPool on the ZINC dataset by varying the
compression ratio. Along with the results of Figure 3 in the main paper, we additionally report the average
performance of the baselines using TopKPool over 5 different runs with the standard deviation.
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Figure 12: Additional graph reconstruction results with TopKPool on the ZINC dataset by varying the
compression ratio. Along with the results of Figure 5 in the main paper, we additionally report the average
performance of the baselines using TopKPool over 5 different runs with the standard deviation.

dataset splitting. Regarding baselines, we use the naive GCN [32], GCN with batch normalization [26],
and random edge drop scheme [43]. Specifically, for the GCN with batch normalization, we use the
batch normalization layer between every GCN layer to normalize the features of nodes. Also, for
the random edge drop baseline, we randomly drop the partial number of edges before the first layer
of GNNs, following the setting of Rong et al. [43], where we do not use the batch normalization to
directly see the effect of random drop on the over-smoothing problem. For our model, we use the
HyperDrop with EHGNN (see section B.2 for detailed architectures), where we drop edges when
passing through every four GNN layers starting from the second layer, and we do not use the batch
normalization. Finally, we use the GCN as the node-level message passing layers for all models, and
also use it as the edge-level message passing layers for our HyperDrop with EHGNN.

Following the hyperparameters of the existing semi-supervised node classification work [13], for the
Cora dataset, we set the dropout rate as 0.5, hidden size as 32, and learning rate as 0.01. Also, for the
Citeseer dataset, we use the same setting from the Cora dataset except for the dropout rate which is
set to 0.2. For the random drop and our models, we drop 20% of edges at each drop step.

D Additional Experimental Results

In this section, we provide the additional experimental results on graph reconstruction and generation
tasks, with examples of reconstructed or generated molecules. Then, to further qualitatively evaluate
the performances of our model, we visualize the edge pooling process of the proposed HyperDrop.

D.1 Graph reconstruction

Additional graph reconstruction results To see the effect of the pooling method on edge and
graph reconstruction tasks, we additionally provide the performance of the TopKPool, a representative
node drop method, with existing edge-aware GNN baselines as well as the performance of the
GMPool, a node clustering method used in our main paper. For the comparison of the pooling methods,
we report the performances of both TopKPool and GMPool, in Figure 11 for edge reconstruction
and in Figure 12 for graph reconstruction. As shown in Figure 11 and Figure 12, the proposed
EHGNN with HyperCluster largely outperforms all the baselines, which suggests that accurately
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Figure 13: Molecule reconstruction examples. Molecules shown in the left column are the original molecules
with an assigned cluster on each edge, where each cluster is represented as color. The clusters are generated by
our method, HyperCluster. The molecules shown in the right column are the reconstructed molecules with our
method, where red circles and squares indicate the incorrect prediction of edges and nodes, respectively.

learning the edge representations is more important than choosing which pooling methods to use,
in order to obtain the global graph-level representations. Moreover, we observe that the node drop
method (TopKPool) for reconstruction is inferior to the node clustering method (GMPool) in terms
of accuracy and exact match, since drop methods result in the removal of nodes and edges. The
performance gain in validity with the TopKPool mostly comes from its reconstruction of a graph with
a single bond, which makes them valid but far different from the desired reconstructed molecules.

Additional examples of molecular graph reconstruction We provide additional examples of
reconstructed molecular graphs on the ZINC dataset in Figure 13. Molecules on the left side are the
original molecules with each edge color indicating the assigned cluster, obtained by our HyperCluster.
Molecules on the right side are the reconstructed molecules, where red circles and squares denote
the incorrect predictions of edges and nodes, respectively. As shown in Figure 13, we can see that
the clusters are meaningfully assigned with respect to the underlying substructures considering both
edges and nodes. For example, edges in the hexagonal ring are assigned to orange and blue colors,
where their color patterns are generally determined by the number of adjacent edges with their bond
type. Moreover, triple bonds connected to the nitrogen (N) are assigned to the silver-colored cluster.
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Figure 14: Graph generation results on MolGAN. Along with the results of Figure 8 in the main paper, we
additionally report the performance of the combination of MolGAN, EHGNN, and GMPool. Solid lines denote
the mean, and shaded areas denote the standard deviation of 3 different runs.
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Datasets Metrics MARS MARS + EHGNN (Ours)

ZINC15

Success Rate 59.53 ± 2.11 64.30 ± 1.54
QED (≥ 0.67) 95.71 ± 0.09 96.36 ± 0.49
SA (≥ 0.67) 99.99 ± 0.01 99.99 ± 0.02

GSK3β (≥ 0.6) 86.52 ± 1.67 90.63 ± 2.57
JNK3 (≥ 0.6) 71.52 ± 4.15 73.60 ± 1.29

ChEMBL

Success Rate 56.64 ± 5.79 58.25 ± 6.07
QED (≥ 0.67) 91.01 ± 2.79 91.13 ± 4.84
SA (≥ 0.67) 99.99 ± 0.01 100.00 ± 0.00

GSK3β (≥ 0.6) 87.45 ± 1.73 90.34 ± 2.65
JNK3 (≥ 0.6) 70.57 ± 4.75 70.01 ± 4.83

Table 8: Graph generation results on MARS in-
cluding all evaluation metrics. The results are the
mean and standard deviation of 3 runs.

Datasets Metrics MARS MARS + EHGNN (Ours)

ZINC15

Success Rate 95.65 ± 0.90 97.28 ± 1.14
QED (≥ 0.6) 99.07 ± 0.29 99.45 ± 0.15
SA (≥ 0.67) 99.99 ± 0.01 99.99 ± 0.02

GSK3β (≥ 0.5) 99.13 ± 0.12 99.52 ± 0.23
JNK3 (≥ 0.5) 97.33 ± 1.30 98.21 ± 0.89

ChEMBL

Success Rate 92.03 ± 3.83 91.88 ± 3.50
QED (≥ 0.6) 96.76 ± 1.44 96.43 ± 2.83
SA (≥ 0.67) 99.99 ± 0.01 100.00 ± 0.00

GSK3β (≥ 0.5) 99.19 ± 0.31 99.39 ± 0.23
JNK3 (≥ 0.5) 95.83 ± 2.30 95.85 ± 0.92

Table 9: Graph generation results on MARS under
the setting of original success thresholds. The results
are the mean and standard deviation of 3 runs.

D.2 Graph generation

MolGAN Since the EHGNN framework can be jointly used with the node-level representation
learning methods, we can further combine the EHGNN framework with the node pooling method,
for obtaining holistic graph-level representation from both node and edge representations. Thus,
we additionally couple the MolGAN + EHGNN with the state-of-the-art node pooling method,
namely GMPool. As shown in Figure 14, compared to the large performance gain obtained by our
EHGNN, the performance gain obtained from using both GMPool and EHGNN is relatively small,
and also the training using both architectures is unstable. This might be because, we can already
obtain the effective graph-level representation only with the combination of MolGAN and EHGNN,
and additionally using more layers makes the training of the MolGAN architecture difficult since
this scheme also increases the number of parameters. On the other perspective, since the original
MolGAN architecture is already able to utilize the node representations, albeit, by simple R-GCN,
the remaining performance gain comes from the explicit edge representations via our EHGNN.

MARS Here, we provide the additional experimental results using the MARS architecture on the
ChEMBL dataset, where we used the available data6 from Xie et al. [55]. As shown in Table 8,
MARS equipped with our EHGNN outperforms the baseline model, showing the same tendency
as in the results on the ZINC15 dataset. Also, the original MARS and the MARS with EHGNN
models successfully generate the high-quality molecules in terms of SA, and there is not much
significant difference between those two models on this metric. However, the performance gain with
our EHGNN against the naive MARS comes from other metrics, such as QED and GNK3β, resulting
in the successful generation of molecules having all desired properties.

On the other hand, we also report the success rate with individual evaluation metrics according to
thresholds used in the MARS paper [55] in Table 9. As shown in Table 9, our MARS + EHGNN
model still outperforms the baseline on most of the metrics, and the performance tendency is highly
similar to the result of different thresholds in Table 8. Those two results demonstrate that accurate
learning of edge representation is important to generate desirable molecules.

6https://github.com/yutxie/mars
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Figure 15: 10 generated molecules with the highest QED scores. The numbers are QED, SA, GSK3β, and
JNK3 scores, respectively. We highlight the QED score in red among four different scores.
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Figure 16: 10 generated molecules with the highest SA scores. The numbers are QED, SA, GSK3β, and
JNK3 scores, respectively. We highlight the SA score in red among four different scores.
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Figure 17: 10 generated molecules with the highest GSK3β scores. The numbers are QED, SA, GSK3β,
and JNK3 scores, respectively. We highlight the GSK3β score in red among four different scores.
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Figure 18: 10 generated molecules with the highest JNK3 scores. The numbers are QED, SA, GSK3β, and
JNK3 scores, respectively. We highlight the JNK3 score in red among four different scores.

Visualization of the generated molecular graphs We further provide the examples of generated
molecules using our EHGNN on MARS in Figure 15, 16, 17, and 18. We hope that these examples
are to be helpful for the chemists to get an insight into the molecules generated with our framework.
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Figure 19: Edge pooling results on the COLLAB dataset. Each row represents the pooling process of a
graph. Colors denote connected components.

Figure 20: Edge pooling results on the PROTEINS dataset. Each row represents the pooling process of a
graph. Colors denote connected components.

D.3 Graph classification

Additional examples of HyperDrop process We provide additional examples of HyperDrop
processes on the COLLAB and PROTEINS datasets in Figure 19 and Figure 20, respectively. Colors
represent the resulting connected components in the final graph after dropping edges, and we represent
isolated nodes as gray. Arrows indicate the layer-wise progressive pooling processes. We can see that
by dropping unnecessary edges, a large graph is divided into smaller connected components, which
we assume to be effective for message passing between the relevant nodes.
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E Limitations and Potential Societal Impacts

In this section, we discuss the limitations and potential societal impacts of our work.

Limitations In this work, we propose to learn edge representations with hypergraphs, using the
dual hypergraph transformation that allows us to apply off-the-shelf node-level message-passing
schemes designed for node representation learning to edges. While we can learn accurate edge
representations using the proposed framework, we need two separate GNNs to learn node and edge
representations independently. Combining these two GNNs into one, by learning node and edge
representations jointly using a single GNN, may be more effective for learning graph representations,
while saving the memory as well. We leave this as future work.

Potential societal impacts The system for generating target molecules is significantly important
to our society, since it can be used to generate vaccines or drugs for diseases, even for the newly
emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the conventional
development of beneficial molecules requires a huge amount of time and resources with a significant
number of trial-and-error processes, before actually applying the generated molecules, since we have
to check potential outcomes those molecules can have.

In this paper, we show that the proposed edge representation learning framework can accurately
represent the edges of the given graph, for the holistic graph-level representation learning, which has
been extensively validated on graph generation and classification tasks with biochemical molecules.
Therefore, this approach can meaningfully aid the development of target molecules in the following
ways. First, the generation system described in Section 4.2 of the main paper is effective for
generating molecules with desirable properties, since it can generate more drug-like molecules that
can effectively inhibit multiple target proteins. Also, the classification system described in Section
4.3 of the main paper is beneficial for examining the toxicity of generated molecules, which is an
essential step before human clinical trials or being deployed on a commercial scale. Therefore, our
method allows us to reduce time and resources for generating and validating target molecules, for
example in the domain of de novo drug design compared to synthesizing drugs by trial-and-error.

As described above, while our method has huge potential impacts for discovering novel molecules
in our real-life, anyone can maliciously use our system, aiming to develop harmful compounds
for humans, such as synthesizing toxic or addictive substances. Thus, we strongly hope that our
method would not be applied for generating harmful molecules that may have negative impacts on
our society.
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